Elucidation of isoform-dependent pH sensitivity of troponin i by NMR spectroscopy.

نویسندگان

  • Ian M Robertson
  • Peter C Holmes
  • Monica X Li
  • Sandra E Pineda-Sanabria
  • Olga K Baryshnikova
  • Brian D Sykes
چکیده

Myocardial ischemia is characterized by reduced blood flow to cardiomyocytes, which can lead to acidosis. Acidosis decreases the calcium sensitivity and contractile efficiency of cardiac muscle. By contrast, skeletal and neonatal muscles are much less sensitive to changes in pH. The pH sensitivity of cardiac muscle can be reduced by replacing cardiac troponin I with its skeletal or neonatal counterparts. The isoform-specific response of troponin I is dictated by a single histidine, which is replaced by an alanine in cardiac troponin I. The decreased pH sensitivity may stem from the protonation of this histidine at low pH, which would promote the formation of electrostatic interactions with negatively charged residues on troponin C. In this study, we measured acid dissociation constants of glutamate residues on troponin C and of histidine on skeletal troponin I (His-130). The results indicate that Glu-19 comes in close contact with an ionizable group that has a pK(a) of ∼6.7 when it is in complex with skeletal troponin I but not when it is bound to cardiac troponin I. The pK(a) of Glu-19 is decreased when troponin C is bound to skeletal troponin I and the pK(a) of His-130 is shifted upward. These results strongly suggest that these residues form an electrostatic interaction. Furthermore, we found that skeletal troponin I bound to troponin C tighter at pH 6.1 than at pH 7.5. The data presented here provide insights into the molecular mechanism for the pH sensitivity of different muscle types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HPLC-SPE-NMR: a productivity tool in natural products research

Natural products provide excellent potential leads for drug development because of their chemical diversity and biological functionality. However, the productivity of discovery of new, pharmacologically active natural products has traditionally been low due to inherent difficulties and costs associated with extract dereplication, i.e., isolation, purification and structure elucidation of indivi...

متن کامل

HPLC-SPE-NMR: a productivity tool in natural products research

Natural products provide excellent potential leads for drug development because of their chemical diversity and biological functionality. However, the productivity of discovery of new, pharmacologically active natural products has traditionally been low due to inherent difficulties and costs associated with extract dereplication, i.e., isolation, purification and structure elucidation of indivi...

متن کامل

Structure elucidation and chemistry of novel diterpenoids from Euphorbia plants of Iran

Plants of the genus Euphorbia have been investigated for different bioactive natural products. I have isolated several new and bioactive diterpenoids from different species of Euphorbia of Iran with myrsinane type skeleton. The structure of the compounds was determined using high resolution mass spectroscopy, 1 D and 2 D NMR spectral data. The stereochemistry of the diterpenoids was determined ...

متن کامل

Structure elucidation and chemistry of novel diterpenoids from Euphorbia plants of Iran

Plants of the genus Euphorbia have been investigated for different bioactive natural products. I have isolated several new and bioactive diterpenoids from different species of Euphorbia of Iran with myrsinane type skeleton. The structure of the compounds was determined using high resolution mass spectroscopy, 1 D and 2 D NMR spectral data. The stereochemistry of the diterpenoids was determined ...

متن کامل

Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A.

Viral-mediated gene transfer of troponin I (TnI) isoforms and chimeras into adult rat cardiac myocytes was used to investigate the role TnI domains play in the myofilament tension response to protein kinase A (PKA). In myocytes expressing endogenous cardiac TnI (cTnI), PKA phosphorylated TnI and myosin-binding protein C and decreased the Ca2+ sensitivity of myofilament tension. In marked contra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 7  شماره 

صفحات  -

تاریخ انتشار 2012